Evidence for a Common Toolbox Based on Necrotrophy in a Fungal Lineage Spanning Necrotrophs, Biotrophs, Endophytes, Host Generalists and Specialists
نویسندگان
چکیده
The Sclerotiniaceae (Ascomycotina, Leotiomycetes) is a relatively recently evolved lineage of necrotrophic host generalists, and necrotrophic or biotrophic host specialists, some latent or symptomless. We hypothesized that they inherited a basic toolbox of genes for plant symbiosis from their common ancestor. Maintenance and evolutionary diversification of symbiosis could require selection on toolbox genes or on timing and magnitude of gene expression. The genes studied were chosen because their products have been previously investigated as pathogenicity factors in the Sclerotiniaceae. They encode proteins associated with cell wall degradation: acid protease 1 (acp1), aspartyl protease (asps), and polygalacturonases (pg1, pg3, pg5, pg6), and the oxalic acid (OA) pathway: a zinc finger transcription factor (pac1), and oxaloacetate acetylhydrolase (oah), catalyst in OA production, essential for full symptom production in Sclerotinia sclerotiorum. Site-specific likelihood analyses provided evidence for purifying selection in all 8 pathogenicity-related genes. Consistent with an evolutionary arms race model, positive selection was detected in 5 of 8 genes. Only generalists produced large, proliferating disease lesions on excised Arabidopsis thaliana leaves and oxalic acid by 72 hours in vitro. In planta expression of oah was 10-300 times greater among the necrotrophic host generalists than necrotrophic and biotrophic host specialists; pac1 was not differentially expressed. Ability to amplify 6/8 pathogenicity related genes and produce oxalic acid in all genera are consistent with the common toolbox hypothesis for this gene sample. That our data did not distinguish biotrophs from necrotrophs is consistent with 1) a common toolbox based on necrotrophy and 2) the most conservative interpretation of the 3-locus housekeeping gene phylogeny--a baseline of necrotrophy from which forms of biotrophy emerged at least twice. Early oah overexpression likely expands the host range of necrotrophic generalists in the Sclerotiniaceae, while specialists and biotrophs deploy oah, or other as-yet-unknown toolbox genes, differently.
منابع مشابه
Lars Kamphuis Richard
1 Introduction 2 Advantages of using M. truncatula to study resistance to fungal necrotrophs 3 Fungal pathogens of M. truncatula 4 New pathogens and isolate validation 5 References 1 Introduction Fungal diseases in plants are almost exclusively members of the phylum Ascomycota and subphylum Pezizomycotina. All common crop plants are susceptible to fungal disease of one kind or another. Spore pr...
متن کاملArabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens.
SUMMARY Fungal plant pathologists have for many decades attempted to classify pathogens into groups called necrotrophs, biotrophs and, more recently, hemibiotrophs. Although these terms are well known and frequently used, disagreements about which pathogens fall into which classes, as well as the precise definition of these terms, has conspired to limit their usefulness. Dogmas concerning the p...
متن کاملLife histories of hosts and pathogens predict patterns in tropical fungal plant diseases.
Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for li...
متن کاملGenetic diversity of Neotyphodium fungal endophytes in three Iranian grass species using AFLP molecular markers
Genetic diversity of fungal endophytes, Neotyphodium species, was studied in grasses Festuca arundinacea, F. pratensis and Lolium perenne using AFLP markers. Fungi were isolated from the host leaf sheaths and Neotyphodium species were selected based on morphological characteristics. To confirm identity of selected fungi belonging to the genus Neotyphodium, polymerase chain reaction was perform...
متن کاملKingdom-Wide Analysis of Fungal Small Secreted Proteins (SSPs) Reveals their Potential Role in Host Association
Fungal secretome consists of various functional groups of proteins, many of which participate in nutrient acquisition, self-protection, or manipulation of the environment and neighboring organisms. The least characterized component of the secretome is small secreted proteins (SSPs). Some SSPs have been reported to function as effectors, but most remain to be characterized. The composition of ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012